Equation of state for bond percolation in a film

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1983 J. Phys. A: Math. Gen. 16 L303
(http://iopscience.iop.org/0305-4470/16/9/004)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 30/05/2010 at 17:14

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Equation of state for bond percolation in a film

G Gumbs and K De'Bell
Department of Physics, Dalhousie University, Halifax, Nova Scotia, Canada B3H 3J5

Received 18 March 1983

Abstract

Solutions of the mean-field theory equation of state for the order parameter of bond percolation in a film of finite thickness are presented.

The percolation problem first formulated by Broadbent and Hammersley (1957) exhibits a continuous phase transition analogous to that found in interacting spin systems (see e.g. the review by Essam 1980). Percolation in a semi-infinite system has been discussed by De'Bell and Essam (1981) who used a probabilistic approach within mean-field (MF) theory. Theumann (1979) and Carton (1980) obtained results for the semi-infinite system by exploiting the equivalence of the bond percolation problem and the q-state Potts model in the limit $q \rightarrow 1$ first noted by Kasteleyn and Fortuin (1969). In the work of Theumann (1979), the Gaussian integration method was applied to derive the Ginzburg-Landau-Wilson (GLw) differential equation with an extrapolation length boundary condition for the MF order parameter. Carton (1980) has calculated some critical exponents to first order in $\varepsilon=6-d$, where d is the spatial dimensionality of the system. Here we derive the differential equation for the mF order parameter of the q-state Potts model in the limit $q \rightarrow 1$, using the method which Mills (1971) applied for a simple cubic Heisenberg ferromagnet with a (100) surface. It is shown that when the limit $q=1$ is taken, Theumann's results are obtained. The MF order parameter for a film of finite thickness is calculated.

The Hamiltonian for the q-state Potts model is

$$
\begin{equation*}
\mathscr{H}=-\left(\frac{q-1}{q}\right) \sum_{l}\left(h_{0}(l) e_{\alpha}+\sum_{\delta} K(l, l+\delta) s_{l+\delta}\right) \cdot s_{l} \tag{1}
\end{equation*}
$$

where the spin variables take on the values of the position vectors of the $(q-1)$ dimensional hypertetrahedron, e_{1}, \ldots, e_{q}, with $e_{\alpha} \cdot e_{\beta}=\left(q \delta_{\alpha \beta}-1\right) /(q-1)$. A lattice site is denoted by $\boldsymbol{R}_{l}=\left(\boldsymbol{l}_{l} a_{0}, l_{2} a_{0}\right)$ where the film is unbounded in the $\boldsymbol{l}_{\|}$plane (parallel to the surfaces) and $l_{z}=1,2,3, \ldots$ is a label for the planes parallel to the (100) surface of a simple cubic lattice with lattice spacing $a_{0} . h_{0}(l)$ is an external, static field parallel to one of the vectors \boldsymbol{e}_{α} and the interaction K is assumed to be $\boldsymbol{K}_{\|}$for nearest-neighbour (\boldsymbol{l} and $\boldsymbol{l}+\boldsymbol{\delta}$) spins in the surface layers and K_{B} otherwise.

Within MF theory, we assume that the net ordering in a plane is parallel to e_{α} by replacing $s_{l+\delta}$ in (1) by its average value. Defining the order parameter ϕ by $\left\langle s_{l+\delta}\right\rangle=$ $\boldsymbol{e}_{\alpha} \phi(\boldsymbol{l}+\boldsymbol{\delta})$, we obtain the MF Hamiltonian
$\mathscr{H}_{\mathrm{MF}}=-\left(\frac{q-1}{q}\right) \sum_{l} h(l) \boldsymbol{e}_{\alpha} \cdot \boldsymbol{s}_{l} \quad h(l) \equiv h_{0}(l)+\sum_{\boldsymbol{\delta}} \boldsymbol{K}(\boldsymbol{l}, \boldsymbol{l}+\boldsymbol{\delta}) \phi(\boldsymbol{l}+\boldsymbol{\delta})$.

One may compute the order parameter by means of the equation

$$
\begin{equation*}
\phi(l)=\frac{\operatorname{Tr} e_{\alpha} \cdot s_{l} \exp \left(-\mathscr{H}_{\mathrm{MF}}\right)}{\operatorname{Tr} \exp \left(-\mathscr{H}_{\mathrm{MF}}\right)}=\frac{\exp [(q-1) h / q]-\exp (-h / q)}{\exp [(q-1) h / q]+(q-1) \exp (-h / q)}, \tag{3}
\end{equation*}
$$

where the right-hand side of (3) is the analogue of the Brillouin function for a Heisenberg ferromagnet. Replacing the lattice vector l by a continuous variable $\boldsymbol{r}=\left(\boldsymbol{r}_{\|}, \boldsymbol{z}\right)$ and expanding the order parameter $\phi(\boldsymbol{l}+\boldsymbol{\delta})$, calculation shows that close to the transition temperature for the film, and for l_{z} not a surface layer, ϕ satisfies

$$
\begin{equation*}
r_{0}(q) \phi(\boldsymbol{r})=\boldsymbol{\nabla}^{2} \phi(\boldsymbol{r})+\left(\boldsymbol{K}_{\mathrm{B}} n^{2} / 2 a_{0}^{2} q\right)(q-2) \phi^{2}(\boldsymbol{r})+h_{0}(l) / a_{0}^{2} K_{\mathrm{B}} \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
r_{0}(q) \equiv\left(q / a_{0}^{2} K_{\mathrm{B}}\right)\left(1-K_{\mathrm{B}} n / q\right) \tag{5}
\end{equation*}
$$

and n is the coordination number of the lattice. Calculation also shows that the order parameter for the surface layers satisfies (5) provided the boundary conditions

$$
\begin{equation*}
\left.\frac{\mathrm{d} \phi(z)}{\mathrm{d} z}\right|_{z=0(L)}=\left.\frac{+(-)}{\Lambda} \phi(z)\right|_{z=0(L)} \tag{6}
\end{equation*}
$$

are imposed at the surfaces $z=0$ and $z=L$. The extrapolation length Λ is defined by

$$
\begin{equation*}
\Lambda^{-1} \equiv\left[(n-1) K_{\mathrm{B}}-(n-2) K_{\|]}\right] / a_{0} K_{\mathrm{B}} \tag{7}
\end{equation*}
$$

Equation (4) is not appropriate for $q>2$ since the phase transition is first order for this case (Mittag and Stephen 1974). For $q=2$ (Ising model), the coefficient of ϕ^{2} in (4) vanishes and higher-order terms must be included in a discussion of the equation of state. Assuming that no external field is applied to the system so that $\phi(r)$ depends only on the variable z and setting $q=1$ in (4), we obtain the GLw equation for bond percolation in a film as

$$
\begin{equation*}
\mathrm{d}^{2} \phi(z) / \mathrm{d} z^{2}=r_{0} \phi(z)+\left(K_{\mathrm{B}} n^{2} / 2 a_{0}^{2}\right) \phi^{2}(z) \tag{8}
\end{equation*}
$$

together with the boundary conditions at $z=0$ and $z=L$ which are given by (6). For convenience, we define $r_{0} \equiv r_{0}(q=1)$. We note that in Theumann's work, the interaction $\left(\boldsymbol{K}_{\perp}\right)$ between a spin on the surface and another in the bulk could be assumed different from the interaction $\left(K_{\mathrm{B}}\right)$ between two spins in the bulk. In the present formalism, extrapolation length boundary conditions could only be obtained if K_{\perp} and K_{B} are equal. Near the mF bulk transition temperature, $r_{0} \ll 1$, i.e. $K_{\mathrm{B}} n \approx 1$. Making this approximation, we obtain the analogue of Theumann's equations for the order parameter. However, for a film of finite thickness, the transition temperature is shifted from its bulk value. It would not be appropriate to make the approximation $K_{\mathrm{B}} n \approx 1$ for a film.

Let $b \equiv K_{\mathrm{B}} n^{2} / 3 a_{0}^{2}$ and $u(x)=\phi_{0} / \phi(z)$ where variables are changed from z to x with $x=(z-L / 2)\left(A / \phi_{0}^{2}\right)^{1 / 2} . \phi_{0}$ and A are related by $r_{0} \phi_{0}^{2}+b \phi_{0}^{3}+A=0$ where ϕ_{0} is determined by the boundary conditions in (7). It is a simple matter to show that (8) may be integrated once to give

$$
\begin{equation*}
(\mathrm{d} u / \mathrm{d} x)^{2}=u(u-1)\left[\left(u+\frac{1}{2}\right)^{2}-\Delta / 4\right] \tag{9}
\end{equation*}
$$

where the discriminant $\Delta \equiv-3(1-c) /(3 c+1)$ is defined in terms of c which is given by $3 c=r_{0} / b \phi_{0}$. Whereas $\phi(z)$ is given in terms of the parameters A, r_{0} and $b, u(x)$ is given in terms of A, ϕ_{0} and c.

Case (1). For $\Delta<0$, we set $\Delta=-4 \kappa^{2}$ where κ is real. We integrate (9) by making use of results in 3.145 of Gradshteyn and Ryzhik (1965). We obtain
$x=(P Q)^{-1 / 2} F\left(2 \tan ^{-1}[Q(u-1) / P u]^{1 / 2}, \frac{1}{2}\left[\left[(P+Q)^{2}+1\right] / P Q\right\}^{1 / 2}\right), \quad u>1$,
$x=-(P Q)^{-1 / 2} F\left(2 \tan ^{-1}[-Q u / P(1-u)]^{1 / 2}, \frac{1}{2}\left\{\left[(P+Q)^{2}+1\right] / P Q\right\}^{1 / 2}\right), \quad u<0$,
where $P^{2}=\kappa^{2}+\frac{9}{4}, Q^{2}=\kappa^{2}+\frac{1}{4}$ and F is an elliptic integral of the first kind.
Case (2). For $\Delta>0$, we set $u_{ \pm} \equiv-\frac{1}{2} \pm \frac{1}{2} \Delta^{1 / 2}$. There are three temperature ranges to be considered which are determined by the order of the roots $u=0,1, u_{+}$and u_{-}. These temperature regions are

$$
\begin{array}{lll}
r_{0}<-3 A \phi_{0}^{2} & \text { or } & u_{-}<0<1<u_{+}, \\
-3 A \phi_{0}^{2}<r_{0}<-\frac{7}{4} A \phi_{0}^{2} & \text { or } & u_{-}<0<u_{+}<1, \\
-\frac{7}{4} A \phi_{0}^{2}<r_{0}<-\frac{3}{4} A \phi_{0}^{2} & \text { or } & u_{-}<u_{+}<0<1 . \tag{11c}
\end{array}
$$

For each temperature range, we can integrate with the use of the results of Gradshteyn and Ryzhik (1965). For example, if $u_{-}<0 \leqslant u<1<u_{+}$we obtain
$x=\left\{2 /\left[u_{+}\left(1-u_{-}\right)\right]^{1 / 2}\right\} F\left(\sin ^{-1}\left[u_{+}(1-u) /\left(u_{+}-u\right)\right]^{1 / 2},\left[\left(u_{+}-u_{-}\right) / u_{+}(1-u)\right]^{1 / 2}\right)$.
Equations (10) and (12) could be written alternatively with the order parameter for a film expressed as an explicit function of the spatial coordinate where the functions involved are Jacobi elliptic functions. For example, if $\Delta>0, c<-\frac{1}{3}$ and $\phi_{0}>0$, it is straightforward to show that with $u(x)=[\psi(v)-c]^{-1}$ where $v=\frac{1}{2} x(-1-3 c)^{1 / 2}$ we have as a solution

$$
\begin{equation*}
\psi(v)=a_{3}+\left(a_{1}-a_{3}\right) / \operatorname{sn}^{2}\left(v \sqrt{a_{1}-a_{3}}, k\right) \tag{13}
\end{equation*}
$$

where sn is the sine amplitude Jacobi elliptic function, $k=\left[\left(a_{2}-a_{3}\right) /\left(a_{1}-a_{3}\right)\right]^{1 / 2}$ and $a_{1}>a_{2}>a_{3}$ are the roots of the cubic equation $a^{3}-3 c^{3} a-\left(1+3 c-2 c^{3}\right)=0$. The solution (13) is symmetric about the mid-plane $z=L / 2$ of the film. We note that for the semi-infinite system, the constant of integration A is determined by the value of the order parameter in the bulk $(z=\infty)$. The value of A for the semi-infinite system gives rise to integrals which could be expressed in terms of elementary functions (Theumann 1979). For a film of finite thickness, the order parameter has been obtained in terms of the discriminant Δ which is a function of all the parameters for this problem.

References

