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LETTER TO THE EDITOR 

Equation of state for bond percolation in a film 

G Gumbs and K De’Bell 
Department of Physics, Dalhousie University, Halifax, Nova Scotia, Canada B3H 355 

Received 18 March 1983 

Abstract. Solutions of the mean-field theory equation of state for the order parameter 
of bond percolation in a film of finite thickness are presented. 

The percolation problem first formulated by Broadbent and Hammersley (1957) 
exhibits a continuous phase transition analogous to that found in interacting spin 
systems (see e.g. the review by Essam 1980). Percolation in a semi-infinite system 
has been discussed by De’Bell and Essam (1981) who used a probabilistic approach 
within mean-field (MF) theory. Theumann (1979) and Carton (1980) obtained results 
for the semi-infinite system by exploiting the equivalence of the bond percolation 
problem and the q-state Potts model in the limit 4 + 1 first noted by Kasteleyn and 
Fortuin (1969). In the work of Theumann (1979), the Gaussian integration method 
was applied to derive the Ginzburg-Landau-Wilson (GLW) differential equation with 
an extrapolation length boundary condition for the MF order parameter. Carton (1980) 
has calculated some critical exponents to first order in E = 6 - d, where d is the spatial 
dimensionality of the system. Here we derive the differential equation for the MF 
order parameter of the q-state Potts model in the limit 4 -* 1, using the method which 
Mills (1971) applied for a simple cubic Heisenberg ferromagnet with a (100) surface. 
It is shown that when the limit 4 = 1 is taken, Theumann’s results are obtained. The 
MF order parameter for a film of finite thickness is calculated. 

The Hamiltonian for the q-state Potts model is 

where the spin variables take on the values of the position vectors of the (4 - 1)- 
dimensional hypertetrahedron, e l ,  . . . , e,, with ea * eo = (4Seo - l)/(q - 1). A lattice 
site is denoted by Rl= (lllao, /,ao) where the film is unbounded in the Ill plane (parallel 
to the surfaces) and I ,  = 1 ,2 ,3 ,  , , . is a label for the planes parallel to the (100) surface 
of a simple cubic lattice with lattice spacing ao. ho(I) is an external, static field parallel 
to one of the vectors e,  and the interaction K is assumed to be KII for nearest-neighbour 
( I  and I + 6) spins in the surface layers and KB otherwise. 

Within MF theory, we assume that the net ordering in a plane is parallel to e,  by 
replacing s1+6 in (1) by its average value. Defining the order parameter C#J by (sltS) = 
e,C#J(I +a), we obtain the MF Hamiltonian 
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One may compute the order parameter by means of the equation 

where the right-hand side of (3) is the analogue of the Brillouin function for a 
Heisenberg ferromagnet. Replacing the lattice vector I by a continuous variable 
r = (q, z )  and expanding the order parameter #J ( I  + 6) ,  calculation shows that close 
to the transition temperature for the film, and for 1, not a surface layer, #J satisfies 

(4) r o ( q ) 4 ( r )  = V24(r) + (KBn2/2a&)(q - 2 ~ ’ ( r )  + ho(l) /u%B 

rO(q) E ( q / a % B ) ( 1  -KBn/q) ( 5 )  

where 

and n is the coordination number of the lattice. Calculation also shows that the order 
parameter for the surface layers satisfies ( 5 )  provided the boundary conditions 

are imposed at the surfaces z = 0 and z = L. The extrapolation length A is defined by 

h-’S[(n  -1)KB-(n -2)KIl]/a&B. (7) 

Equation (4) is not appropriate for q > 2 since the phase transition is first order for 
this case (Mittag and Stephen 1974). For q = 2 (Ising model), the coefficient of (6* in 
(4) vanishes and higher-order terms must be included in a discussion of the equation 
of state. Assuming that no external field is applied to the system so that #J ( r )  depends 
only on the variable z and setting q = 1 in (4), we obtain the GLW equation for bond 
percolation in a film as 

d2#J(z)/dz2 = r o # J ( z ) + ( K ~ n ~ / 2 a : ) # J ’ ( z ) ,  (8) 

together with the boundary conditions at z = 0 and z = L which are given by (6 ) .  
For convenience, we define ro=ro(q = 1). We note that in Theumann’s work, the 
interaction (K, )  between a spin on the surface and another in the bulk could be 
assumed different from the interaction (KB) between two spins in the bulk. In the 
present formalism, extrapolation length boundary conditions could only be obtained 
if K ,  and KB are equal. Near the MF bulk transition temperature, roc< 1, i.e. KBn = 1. 
Making this approximation, we obtain the analogue of Theumann’s equations for the 
order parameter. However, for a film of finite thickness, the transition temperature 
is shifted from its bulk value. It would not be appropriate to make the approximation 
KBn = 1 for a film. 

Let 6 = KBn2/3u: and U(X) = #Jo/ (6(z )  where variables are changed from z to x 
with x = ( z  -L,’~)(A/C$;)’’~. #Jo and A are related by r & ; + b # J i + A  = 0 where #Jo is 
determined by the boundary conditions in (7). It is a simple matter to show that (8) 
may be integrated once to give 

(9) 
where the discriminant A =  -3(1 -c)/(3c + 1)  is defined in terms of c which is given 
by 3c = ro /6~$o.  Whereas 4 (2) is given in terms of the parameters A,  ro and b, U (x) 
is given in terms of A, #Jo and c. 

(duldx)’ = U (U - l ) [ ( ~  + i)’ - A/4] 
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Case (1). For A < O ,  we set A =  - 4 ~ ~  where K is real. We integrate (9) by making 
use of results in 3.145 of Gradshteyn and Ryzhik (1965). We obtain 

x = (PQ)-’”F(2 taK’[Q(u - ~ ) / P u ] ’ / ~ ,  ${[(P+ Q)2+ ll/R?}1’2), 

x = -(PQ)-1/2F(2 tan-’[-Qu/P(l- u ) ] ~ ’ ~ ,  f { [ ( P  + Q)2 + l]/PQ}1’2), 

u > l ,  

U C O ,  

( loa)  

(lob) 
where P 2  = K + $, Q2 = K + and F is an elliptic integral of the first kind. 
Case (2). For A>O,  we set U * = - ? * T A  . There are three temperature ranges to 
be considered which are determined by the order of the roots U = 0, 1, U +  and U-. 
These temperature regions are 

1 1 1/2 

rQ < - 3 4 :  or u - < O < l < u + ,  (1 la )  

-3A4; < r~ < -h4; or u-<O<u+<l ,  (1lb) 

- 2 4 ;  < ro < -$I& or u - < u + < O < l .  ( 1 l C )  

For each temperature range, we can integrate with the use of the results of Gradshteyn 
and Ryzhik (1965). For example, if U- < 0 s U < 1 < U +  we obtain 

x = { 2 / [ ~ + ( 1 - ~ - ) 1 ” ~ } ~ ( s i n - ’ [ u + ( 1  - U ) / ( U + - U ) ] ” ~ ,  [ (u+-u-) /u+( l  - U ) ] ” ~ ) .  (12) 

Equations (10) and (12) could be written alternatively with the order parameter 
for a film expressed as an explicit function of the spatial coordinate where the functions 
involved are Jacobi elliptic functions. For example, if A > 0, c < -$ and q50 > 0, it is 
straightforward to show that with u ( x )  = [$(u)-c]-’ where U = ; x ( - 1 - 3 ~ ) ’ / ~  we have 
as a solution 

(13) 
where sn is the sine amplitude Jacobi elliptic function, k = [(a2-a3)/(a1 - u ~ ) ] ’ ’ ~  and 
al>a2>a3 are the roots of the cubic equation a3-3c3a- (1+3c-2c3)=0 .  The 
solution (13) is symmetric about the mid-plane z = L/2 of the film. We note that for 
the semi-infinite system, the constant of integration A is determined by the value of 
the order parameter in the bulk (z = CO). The value of A for the semi-infinite system 
gives rise to integrals which could be expressed in terms of elementary functions 
(Theumann 1979). For a film of finite thickness, the order parameter has been obtained 
in terms of the discriminant A which is a function of all the parameters for this problem. 

$(U)  = a3 + (a1 - a3)/sn2(vJa - a3, k) 
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